Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Urban Health ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587782

RESUMEN

Urban environmental factors such as air quality, heat islands, and access to greenspaces and community amenities impact public health. Some vulnerable populations such as low-income groups, children, older adults, new immigrants, and visible minorities live in areas with fewer beneficial conditions, and therefore, face greater health risks. Planning and advocating for equitable healthy urban environments requires systematic analysis of reliable spatial data to identify where vulnerable populations intersect with positive or negative urban/environmental characteristics. To facilitate this effort in Canada, we developed HealthyPlan.City ( https://healthyplan.city/ ), a freely available web mapping platform for users to visualize the spatial patterns of built environment indicators, vulnerable populations, and environmental inequity within over 125 Canadian cities. This tool helps users identify areas within Canadian cities where relatively higher proportions of vulnerable populations experience lower than average levels of beneficial environmental conditions, which we refer to as Equity priority areas. Using nationally standardized environmental data from satellite imagery and other large geospatial databases and demographic data from the Canadian Census, HealthyPlan.City provides a block-by-block snapshot of environmental inequities in Canadian cities. The tool aims to support urban planners, public health professionals, policy makers, and community organizers to identify neighborhoods where targeted investments and improvements to the local environment would simultaneously help communities address environmental inequities, promote public health, and adapt to climate change. In this paper, we report on the key considerations that informed our approach to developing this tool and describe the current web-based application.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38083058

RESUMEN

The integration of Electronic Health Records (EHRs) with Machine Learning (ML) models has become imperative in examining patient outcomes due to the vast amounts of clinical data they provide. However, critical information regarding social and behavioral factors that affect health, such as social isolation, stress, and mental health complexities, is often recorded in unstructured clinical notes, hindering its accessibility. This has resulted in an over-reliance on clinical data in current EHR-based research, potentially leading to disparities in health outcomes. This study aims to evaluate the impact of incorporating patient-specific context from unstructured EHR data on the accuracy and stability of ML algorithms for predicting mortality, using the MIMIC III database. Results from the study confirmed the significance of incorporating patient-specific information into prediction models, leading to a notable improvement in the discriminatory power and robustness of the ML algorithms. Furthermore, the findings underline the importance of considering non-clinical factors related to a patient's daily life, in addition to clinical factors, when making predictions about patient outcomes. The advent of advanced generative models, such as GPT-4, presents new opportunities for effectively extracting social and behavioral factors from unstructured clinical notes, further enhancing the accuracy and stability of ML algorithms in predicting patient outcomes. The results of our study have significant ramifications for improving ML in clinical decision support and patient outcome predictions, specifically highlighting the potential role of generative models like GPT-4 in advancing ML-based outcome predictions.


Asunto(s)
Registros Electrónicos de Salud , Aprendizaje Automático , Humanos , Algoritmos , Salud Mental , Registros
3.
NPJ Digit Med ; 4(1): 41, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658681

RESUMEN

The ubiquitous and openly accessible information produced by the public on the Internet has sparked an increasing interest in developing digital public health surveillance (DPHS) systems. We conducted a systematic scoping review in accordance with the PRISMA extension for scoping reviews to consolidate and characterize the existing research on DPHS and identify areas for further research. We used Natural Language Processing and content analysis to define the search strings and searched Global Health, Web of Science, PubMed, and Google Scholar from 2005 to January 2020 for peer-reviewed articles on DPHS, with extensive hand searching. Seven hundred fifty-five articles were included in this review. The studies were from 54 countries and utilized 26 digital platforms to study 208 sub-categories of 49 categories associated with 16 public health surveillance (PHS) themes. Most studies were conducted by researchers from the United States (56%, 426) and dominated by communicable diseases-related topics (25%, 187), followed by behavioural risk factors (17%, 131). While this review discusses the potentials of using Internet-based data as an affordable and instantaneous resource for DPHS, it highlights the paucity of longitudinal studies and the methodological and inherent practical limitations underpinning the successful implementation of a DPHS system. Little work studied Internet users' demographics when developing DPHS systems, and 39% (291) of studies did not stratify their results by geographic region. A clear methodology by which the results of DPHS can be linked to public health action has yet to be established, as only six (0.8%) studies deployed their system into a PHS context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA